Using Bayesian Multilevel Whole Genome Regression Models for Partial Pooling of Training Sets in Genomic Prediction
نویسندگان
چکیده
Training set size is an important determinant of genomic prediction accuracy. Plant breeding programs are characterized by a high degree of structuring, particularly into populations. This hampers the establishment of large training sets for each population. Pooling populations increases training set size but ignores unique genetic characteristics of each. A possible solution is partial pooling with multilevel models, which allows estimating population-specific marker effects while still leveraging information across populations. We developed a Bayesian multilevel whole-genome regression model and compared its performance with that of the popular BayesA model applied to each population separately (no pooling) and to the joined data set (complete pooling). As an example, we analyzed a wide array of traits from the nested association mapping maize population. There we show that for small population sizes (e.g., <50), partial pooling increased prediction accuracy over no or complete pooling for populations represented in the training set. No pooling was superior; however, when populations were large. In another example data set of interconnected biparental maize populations either partial or complete pooling was superior, depending on the trait. A simulation showed that no pooling is superior when differences in genetic effects among populations are large and partial pooling when they are intermediate. With small differences, partial and complete pooling achieved equally high accuracy. For prediction of new populations, partial and complete pooling had very similar accuracy in all cases. We conclude that partial pooling with multilevel models can maximize the potential of pooling by making optimal use of information in pooled training sets.
منابع مشابه
Accuracy of Genomic Prediction under Different Genetic Architectures and Estimation Methods
The accuracy of genomic breeding value prediction was investigated in various levels of reference population size, trait heritability and the number of quantitative trait locus (QTL). Five Bayesian methods, including Bayesian Ridge regression, BayesA, BayesB, BayesC and Bayesian LASSO, were used to estimate the marker effects for each of 27 scenarios resulted from combining three levels for her...
متن کاملImputation of parent-offspring trios and their effect on accuracy of genomic prediction using Bayesian method
The objective of this study was to evaluate the imputation accuracy of parent-offspring trios under different scenarios. By using simulated datasets, the performance Bayesian LASSO in genomic prediction was also examined. The genome consisted of 5 chromosomes and each chromosome was set as 1 Morgan length. The number of SNPs per chromosome was 10000. One hundred QTLs were randomly distributed a...
متن کاملThe Impact of Different Genetic Architectures on Accuracy of Genomic Selection Using Three Bayesian Methods
Genome-wide evaluation uses the associations of a large number of single nucleotide polymorphism (SNP) markers across the whole genome and then combines the statistical methods with genomic data to predict the genetic values. Genomic predictions relieson linkage disequilibrium (LD) between genetic markers and quantitative trait loci (QTL) in a population. Methods that use all markers simultaneo...
متن کاملمقایسه روش های مختلف آماری در انتخاب ژنومی گاوهای هلشتاین
Genomic selection combines statistical methods with genomic data to predict genetic values for complex traits. The accuracy of prediction of genetic values in selected population has a great effect on the success of this selection method. Accuracy of genomic prediction is highly dependent on the statistical model used to estimate marker effects in reference population. Various factors such a...
متن کاملComparison of Single and Multi-Step Bayesian Methods for Predicting Genomic Breeding Values in Genotyped and Non-Genotyped Animals- A Simulation Study
The purpose of this study was to compare the accuracy of genomic evaluation for Bayes A, Bayes B, Bayes C and Bayes L multi-step methods and SSBR-C and SSBR-A single-step methods in the different values of π for predicting genomic breeding values of the genotyped and non-genotyped animals. A genome with 40000 SNPs on the 20 chromosom was simulated with the same distance (100cM). The π valu...
متن کامل